Apparent Splitting of S Waves Propagating Through an Isotropic Lowermost Mantle

by Laura Parisi, Ana M. Ferreira, Jeroen Ritsema
Year: 2018

Extra Information

Journal of Geophysical Research: Solid Earth. May 2018, Vol. 123, Issue 5, Pages 3909-3922.


Observations of shear wave anisotropy are key for understanding the mineralogical structure and flow in the mantle. Several researchers have reported the presence of seismic anisotropy in the lowermost 150–250 km of the mantle (i.e., D urn:x-wiley:jgrb:media:jgrb52636:jgrb52636-math-0002 layer), based on differences in the arrival times of vertically (SV) and horizontally (SH) polarized shear waves. By computing waveforms at a period > 6 s for a wide range of 1‐D and 3‐D Earth structures, we illustrate that a time shift (i.e., apparent splitting) between SV and SH may appear in purely isotropic simulations. This may be misinterpreted as shear wave anisotropy. For near‐surface earthquakes, apparent shear wave splitting can result from the interference of S with the surface reflection sS. For deep earthquakes, apparent splitting can be due to the S wave triplication in D urn:x-wiley:jgrb:media:jgrb52636:jgrb52636-math-0003, reflections off discontinuities in the upper mantle, and 3‐D heterogeneity. The wave effects due to anomalous isotropic structure may not be easily distinguished from purely anisotropic effects if the analysis does not involve full waveform simulations.